
Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Contexts and Dependency Injection for Java EE
An introduction to JSR-299

Gavin King
gavin@hibernate.org
http://in.relation.to/Bloggers/Gavin

Tuesday, March 24, 2009

mailto:gavin@hibernate.org
mailto:gavin@hibernate.org
http://in.relation.to/Bloggers/Gavin
http://in.relation.to/Bloggers/Gavin


Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Why do you care about Java EE 6?

• The EE 6 web profile removes most of the “cruft” that has developed 
over the years
– mainly the totally useless stuff like web services, EJB 2 entity beans, etc
– some useful stuff like JMS is also missing, but vendors can include it if they like

• EJB 3.1 - a whole bunch of cool new functionality!
• JPA 2.0 - typesafe criteria query API, many more O/R mapping 

options
• JSF 2.0 - finally fixes the problems!
• Bean Validation 1.0 - annotation-based validation API
• Servlet 3.0 - async support, better support for frameworks
• Finally, standard global JNDI names
• Contexts and Dependency Injection for Java EE

– JSR-299, the spec formally known as “Web Beans”
– finally, a complete, standard DI mechanism

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

What is JSR-299?

• JSR-299 defines a unifying dependency injection and contextual 
lifecycle model for Java EE 6
– a completely new, richer dependency management model
– designed for use with stateful objects
– integrates the “web” and “transactional” tiers
– makes it much easier to build applications using JSF and EJB together
– includes a complete SPI allowing third-party frameworks to integrate cleanly in 

the EE 6 environment

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

The theme

• Loose coupling...
– decouple server and client via well-defined types and “binding types”

• so that the server implementation may vary

– decouple lifecycle of collaborating components
• components are contextual, with automatic lifecycle management
• allows stateful components to interact like services, purely by message-passing

– decouple orthogonal concerns
• via interceptors

– completely decouple message producer from consumer
• via events

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

The theme

• ..with strong typing!
– eliminate lookup using string-based names

• the compiler will detect typing errors
• you don’t need special authoring tools to get autocompletion, etc

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

What’s unique?

• Implementations of a types may vary at deployment time - without 
the need for a central list of available implementations!
– No need to explicitly list beans in XML (Spring, HiveMind, etc)
– Nor even using a Java-based DSL (Guice)

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

What kinds of things can be injected?

• Certain kinds of things pre-defined by the specification:
– (Almost) any Java class
– EJB session beans
– Objects returned by producer methods 
– Java EE resources (Datasources, JMS topics/queues, etc)
– Persistence contexts (JPA EntityManager)
– Web service references
– Remote EJBs references

• Plus anything else you can think of!
– An SPI allows third-party frameworks to introduce new kinds of things

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Simple example

• A really simple Java class:

public class Greeting {

   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

EJB example

• The class could be an EJB:

@Stateless
public class Greeting {

   @RolesAllowed(“friend”)
   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Field injection

• A simple client:

public class Printer {

   @Current Greeting greeting;

   public void greet() {
      System.out.println( greeting.greet(“world”) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Constructor injection

• Or, using constructor injection:

public class Printer {

   private Greeting greeting;

   public Printer(Greeting greeting) { 
      this.greeting = greeting; 
   }

   public void greet() {
      System.out.println( greeting.greet(“world”) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Initializer method injection

• Or, using initializer method injection:

public class Printer {

   private Greeting greeting;

   @Initializer
   void init(Greeting greeting) { 
      this.greeting = greeting; 
   }

   public void greet() {
      System.out.println( greeting.greet(“world”) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Binding types

• A binding type is an annotation that lets a client choose between 
multiple implementations of a certain type (class or interface)
– Binding types replace lookup via string-based names
– @Current is the default binding type

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Defining binding types

• Define a new binding type:

public
@BindingType
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
@interface Informal {}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring bindings

• Same type, different implementation:

public
@Informal
class InformalGreeting extends Greeting {

   public String greet(String name) {
      return “hi ” + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring injection point bindings

• A client of the new implementation:

public class Printer {

   @Informal Greeting greeting;

   public void greet() {
      System.out.println( greeting.greet(“SDC”) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

EL names

• To use our class in Unified EL expressions, give it a name:

public
@Named(“printer”)
class Printer {

   @Current Greeting greeting;

   public void greet() {
      System.out.println( greeting.greet(“world”) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

EL name defaulting

• Well, actually, that name can be defaulted:

public
@Named
class Printer {

   @Current Greeting greeting;

   public void greet() {
      System.out.println( greeting.greet(“world”) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Unified EL

• Now we can use the object in a JSF or JSP page:

<h:commandButton value=”Say Hello” 
                action=”#{printer.greet}”/>

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

A stateful class

• If we want our object to hold state, we need to declare the scope of 
that state:

public
@RequestScoped
@Named
class Printer {

   @Current Greeting greeting;
   private String name;

   public void setName(String name) { this.name=name; }
   public String getName() { return name; }

   public void greet() {
      System.out.println( greeting.greet(name) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Unified EL

• And now we can use it to process a JSF form:

<h:form>
   <h:inputText value=”#{printer.name}”/>
   <h:commandButton value=”Say Hello” 
                   action=”#{printer.greet}”/>
</h:form>

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Scopes and contexts

• Extensible context model
– A scope type is an annotation
– A context implementation can be associated with the scope type

• Dependent scope, @Dependent
– this is the default
– it means that an object exists to serve exactly one client, and has the same 

lifecycle as that client

• Built-in scopes:
– Any web request, web service request, RMI call, EJB timeout:

• @ApplicationScoped, @RequestScoped

– Any servlet:
• @SessionScoped

– JSF requests:
• @ConversationScoped

• Custom scopes
– provided by third-party frameworks via an SPI

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Scoped objects

• A session-scoped object

public
@SessionScoped
class Login {

   private User user;

   public void login() {
      user = ...;
   }

   public User getUser() { return user; }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Injecting a scoped object

• The client doesn’t know anything about the lifecycle of the session-
scoped object:

public
@Named
class Printer {

   @Current Greeting greeting;
   @Current Login login;

   public void greet() {
      System.out.println( 
         greeting.greet( login.getUser().getName() ) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Custom scopes

• It’s easy to create the annotation for a custom scope:

• After this, the hard work begins!
– implement the Context SPI

public
@ScopeType
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface BusinessProcessScoped {}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Producer methods

• Producer methods allow control over the production of the injected 
instance
– For runtime polymorphism
– For control over initialization
– Allow injection of classes we don’t control, that don’t satisfy the normal 

requirements of a class that may be injected
– For further decoupling of a “producer” of state from the “consumer”

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring producer methods

• Simple producer method:

public
@SessionScoped
class Login {

   private User user;

   public void login() {
      user = ...;
   }
   
   @Produces
   User getUser() { return user; }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Client of a producer method

• No more dependency to Login!

public class Printer {

   @Current Hello hello;
   @Current User user;

   public void hello() {
      System.out.println( 
         hello.hello( user.getName() ) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Scoped producer methods

• Producer methods may have a scope:

• they may even have bindings, names, etc...

public
@RequestScoped
class Login {

   private User user;

   public void login() {
      user = ...;
   }
   
   @Produces @SessionScoped
   User getUser() { return user; }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Producer fields

• Producer fields are just a shortcut:

public
@RequestScoped
class Login {

   @Produces @SessionScoped User user;

   public void login() {
      user = ...;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring Java EE resources

• To inject Java EE resources, persistence contexts, web service 
references, remote EJB references, etc, we use a special kind of 
producer field declaration:

public class UserDatabasePersistenceContext {

   @Produces @UserDatabase
   @PersistenceContext
   EntityManager userDatabase;

}

public class PricesTopic {

   @Produces @Prices
   @Resource(name=“java:global/env/jms/Prices”)
   Topic pricesTopic;

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Injecting Java EE resources

• Now we’ve eliminated the use of string-based names:

public class UserDatabasePersistenceContext {

   @UserDatabase EntityManager userDatabase;

}

public class PricesTopic {

   @Prices TopicSession topicSession;
   @Prices TopicPublisher topicPublisher;

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Deployment types

• A deployment type is an annotation that identifies a deployment 
scenario
– Deployment types may be enabled or disabled, allowing whole sets of 

implementations to be easily enabled or disabled at deployment time
– Deployment types have a precedence, allowing the container to choose 

between various implementations of a type
– Deployment types replace verbose XML configuration documents or Java-based 

DSLs

• Default deployment type: Production

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Defining a deployment type

• Define a custom deployment type:

• (Actually, we don’t really use deployment types for i18n, since the 
locale depends upon the user, not the deployment!)

public
@DeploymentType
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Espanol {}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring the deployment type

• Same type, different deployment type:

public
@Espanol
class Saludo extends Greeting {

   public String greet(String nombre) {
      return “hola ” + nombre;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Enabled deployment types

• Implementation depends upon which deployment types are enabled:

• (The JSR-299 XML is also strongly-typed, but we don’t have time to 
talk about it now.)

<Beans xmlns="urn:java:ee"
                xmlns:myapp="urn:java:com.mydomain.myapp">

   <Deploy>
      <Standard/>
      <Production/>
      <myapp:Espanol/>
   </Deploy>

</Beans>

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Conversation context

• Spans multiple requests
• “Smaller” than session
• Allows multi-window / multi-tab operation
• Corresponds to an optimistic transaction

– conversation-scoped managed persistence context
– solves problems with optimistic locking and lazy fetching

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Controlling the conversation context

• The conversation context is demarcated by the application:

public
@ConversationScoped
class NumberGuess {

   @Current Conversation conversation;

   private int number;
   private int min; 
   private int max;
   
   @Initializer
   void start(@Random int random) {
      conversation.begin();
      number = random;
      min = 1; 
      max = 100;
   }

...

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Controlling the conversation context

• The conversation context is demarcated by the application:

...

   public boolean guess(int guess) {      
      if (guess==number) {
         conversation.end();
         return true;  
      }
      else {
         if (guess<number && guess>min) {
            min=guess;
         }
         else if (guess>number && guess<max) {
            max=guess;
         }
         return false;
      }

}
}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Interceptors

• The package javax.interceptor defines method and lifecycle 
interception APIs
– this is good stuff, except for the use of @Interceptors(...) to bind 

interceptors directly to a component

• Interceptor should be completely decoupled from implementation
– via semantic annotations

• Interceptor classes should be deployment-specific
– disable transaction and security interceptors during testing

• Interceptor ordering should be defined centrally 

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Interceptor binding types

• Define an interceptor binding type:

public
@InterceptorBindingType
@Retention(RUNTIME)
@Target({TYPE, METHOD})
@interface Secure {}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring interceptor bindings of an 
interceptor

• Interceptor implementation:

public
@Secure
@Interceptor
class SecurityInterceptor {

   @AroundInvoke
   public Object aroundInvoke(InvocationContext ctx) {
      ...
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Class-level interceptor bindings

• Class-level interceptor:

public
@Secure
class Greeting {

   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Method-level interceptor bindings

• Method-level interceptor:

public class Greeting {

   @Secure
   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Interceptor binding types

• Multiple interceptors:

public
@Transactional
class Greeting {

   @Secure
   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Enabled interceptors

• Interceptor ordering and enablement:

<Beans xmlns="urn:java:ee"
                xmlns:secure="urn:java:org.jboss.secure"
       xmlns:tx="urn:java:org.jboss.tx">

   <Interceptors>
      <secure:SecurityInterceptor/>
      <tx:TransactionInterceptor/>
   </Interceptors>

</Beans>

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Reusing interceptor bindings

• Interceptor binding types may be applied to other interceptor binding 
types: 

public
@Secure
@Transactional
@InterceptorBindingType
@Retention(RUNTIME)
@Target(TYPE)
@interface Action {}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Interceptor binding types

• Multiple interceptors:

public
@Action
class Greeting {

   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Stereotypes

• It is not only interceptor bindings we want to reuse!
• We have common architectural “patterns” in our application, with 

recurring component roles
– Capture the roles using stereotypes

• A stereotype packages:
– A default deployment type
– A default scope
– A set of interceptor bindings
– Restrictions upon allowed scopes
– Restrictions upon the Java type
– May specify that components have names by default

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Defining stereotypes

• Defining a new stereotype:

public
@Secure
@Transactional
@RequestScoped
@Named
@Production
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
@interface Action {}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Declaring stereotypes

• Using a stereotype:

public
@Action
class Greeting {

   public String greet(String name) {
      return “hello “ + name;
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Event producers

• Event producer:

public class Login {

   @Fires Event<LoggedIn> loggedInEvent;

   public void login() {
      User user = ...;
      loggedInEvent.fire( new LoggedIn(user) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Event consumers

• Event consumer:

public class Printer {

   void onLogin(@Observes LoggedIn loggedIn, 
                Greeting greeting) {
      System.out.println( 
         greeting.greet( loggedIn.getUser().getName() ) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Event producers with binding types

• Events may also use binding types:

public class Login {

   @Fires @LoggedIn Event<User> loggedInEvent;

   public void login() {
      User user = ...;
      loggedInEvent.fire(user);
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

Event consumers with binding types

• Event consumer:

public class Printer {

   void onLogin(@Observes @LoggedIn User user, 
                Greeting greeting) {
      System.out.println( greeting.greet( user.getName() ) );
   }

}

Tuesday, March 24, 2009



Copyright © 2007 Red Hat, Inc. All rights reserved. | 

More information

• Public draft:
– http://www.jcp.org/en/jsr/detail?id=299

• Reference Implementation:
– http://seamframework.org/WebBeans

• RI Documentation:
– http://docs.jboss.org/webbeans/reference/current/en-US/html/

• Blog:
– http://in.relation.to/Bloggers/Everyone/Tag/Web+Beans

Tuesday, March 24, 2009

http://www.jcp.org/en/jsr/detail?id=299
http://www.jcp.org/en/jsr/detail?id=299
http://jboss.com/products/seam
http://jboss.com/products/seam
http://jboss.com/products/seam
http://jboss.com/products/seam
http://in.relation.to/Bloggers/Everyone/Tag/Web+Beans
http://in.relation.to/Bloggers/Everyone/Tag/Web+Beans

